groupby.DataFrameGroupBy.max
- DataFrameGroupBy.max(numeric_only: bool = True) pd.DataFrame [source]
Compute the max value for each group.
Parameters
- numeric_only: {True, False, None} Default is True
Which datatype to be returned - True: Returns all values as float64, NaN/NaT values are removed - None: Returns all values as the same dtype where possible, NaN/NaT are removed - False: Returns all values as the same dtype where possible, NaN/NaT are preserved
Returns
- pandas.DataFrame
max value for each numeric column of each group
See Also
Examples
>>> from tests import OPENSEARCH_TEST_CLIENT
>>> df = oml.DataFrame( ... OPENSEARCH_TEST_CLIENT, "flights", ... columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"] ... ) >>> df.groupby("DestCountry").max(numeric_only=False) AvgTicketPrice Cancelled dayOfWeek timestamp DestCountry AE 1126.148682 True 6 2018-02-11 04:11:14 AR 1199.642822 True 6 2018-02-11 17:09:05 AT 1181.835815 True 6 2018-02-11 23:12:33 AU 1197.632690 True 6 2018-02-11 21:39:01 CA 1198.852539 True 6 2018-02-11 23:04:08 ... ... ... ... ... RU 1196.742310 True 6 2018-02-11 20:03:31 SE 1198.621582 True 6 2018-02-11 22:06:14 TR 855.935547 True 6 2018-02-04 01:59:23 US 1199.729004 True 6 2018-02-11 23:27:00 ZA 1196.186157 True 6 2018-02-11 23:29:45 [32 rows x 4 columns]