# SPDX-License-Identifier: Apache-2.0
#
# The OpenSearch Contributors require contributions made to
# this file be licensed under the Apache-2.0 license or a
# compatible open source license.
#
# Modifications Copyright OpenSearch Contributors. See
# GitHub history for details.
#
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import collections.abc as collections_abc
from itertools import chain
from typing import Any
from opensearchpy.connection.connections import get_connection
from opensearchpy.helpers.field import Nested, Text, construct_field
from .utils import DslBase
META_FIELDS = frozenset(
(
"dynamic",
"transform",
"dynamic_date_formats",
"date_detection",
"numeric_detection",
"dynamic_templates",
"enabled",
)
)
class Properties(DslBase):
name = "properties"
_param_defs = {"properties": {"type": "field", "hash": True}}
def __init__(self) -> None:
super().__init__()
def __repr__(self) -> str:
return "Properties()"
def __getitem__(self, name: Any) -> Any:
return self.properties[name]
def __contains__(self, name: Any) -> bool:
return name in self.properties
def to_dict(self) -> Any:
return super().to_dict()["properties"]
def field(self, name: Any, *args: Any, **kwargs: Any) -> "Properties":
self.properties[name] = construct_field(*args, **kwargs)
return self
def _collect_fields(self) -> Any:
"""Iterate over all Field objects within, including multi fields."""
for f in self.properties.to_dict().values():
yield f
# multi fields
if hasattr(f, "fields"):
yield from f.fields.to_dict().values()
# nested and inner objects
if hasattr(f, "_collect_fields"):
yield from f._collect_fields()
def update(self, other_object: Any) -> None:
if not hasattr(other_object, "properties"):
# not an inner/nested object, no merge possible
return
our, other = self.properties, other_object.properties
for name in other:
if name in our:
if hasattr(our[name], "update"):
our[name].update(other[name])
continue
our[name] = other[name]
[docs]class Mapping:
def __init__(self) -> None:
self.properties = Properties()
self._meta: Any = {}
[docs] def __repr__(self) -> str:
return "Mapping()"
def _clone(self) -> Any:
m = Mapping()
m.properties._params = self.properties._params.copy()
return m
@classmethod
def from_opensearch(cls, index: Any, using: str = "default") -> Any:
m = cls()
m.update_from_opensearch(index, using)
return m
def resolve_nested(self, field_path: Any) -> Any:
field = self
nested = []
parts = field_path.split(".")
for i, step in enumerate(parts):
try:
field = field[step]
except KeyError:
return (), None
if isinstance(field, Nested):
nested.append(".".join(parts[: i + 1]))
return nested, field
def resolve_field(self, field_path: Any) -> Any:
field = self
for step in field_path.split("."):
try:
field = field[step]
except KeyError:
return None
return field
def _collect_analysis(self) -> Any:
analysis: Any = {}
fields: Any = []
if "_all" in self._meta:
fields.append(Text(**self._meta["_all"]))
for f in chain(fields, self.properties._collect_fields()):
for analyzer_name in (
"analyzer",
"normalizer",
"search_analyzer",
"search_quote_analyzer",
):
if not hasattr(f, analyzer_name):
continue
analyzer = getattr(f, analyzer_name)
d = analyzer.get_analysis_definition()
# empty custom analyzer, probably already defined out of our control
if not d:
continue
# merge the definition
# TODO: conflict detection/resolution
for key in d:
analysis.setdefault(key, {}).update(d[key])
return analysis
def save(self, index: Any, using: str = "default") -> Any:
from opensearchpy.helpers.index import Index
index = Index(index, using=using)
index.mapping(self)
return index.save()
def update_from_opensearch(self, index: Any, using: str = "default") -> None:
opensearch = get_connection(using)
raw = opensearch.indices.get_mapping(index=index)
_, raw = raw.popitem()
self._update_from_dict(raw["mappings"])
def _update_from_dict(self, raw: Any) -> None:
for name, definition in raw.get("properties", {}).items():
self.field(name, definition)
# metadata like _all etc
for name, value in raw.items():
if name != "properties":
if isinstance(value, collections_abc.Mapping):
self.meta(name, **value)
else:
self.meta(name, value)
def update(self, mapping: Any, update_only: bool = False) -> None:
for name in mapping:
if update_only and name in self:
# nested and inner objects, merge recursively
if hasattr(self[name], "update"):
# FIXME only merge subfields, not the settings
self[name].update(mapping[name], update_only)
continue
self.field(name, mapping[name])
if update_only:
for name in mapping._meta:
if name not in self._meta:
self._meta[name] = mapping._meta[name]
else:
self._meta.update(mapping._meta)
def __contains__(self, name: Any) -> Any:
return name in self.properties.properties
def __getitem__(self, name: Any) -> Any:
return self.properties.properties[name]
def __iter__(self) -> Any:
return iter(self.properties.properties)
def field(self, *args: Any, **kwargs: Any) -> "Mapping":
self.properties.field(*args, **kwargs)
return self
def meta(self, name: Any, params: Any = None, **kwargs: Any) -> "Mapping":
if not name.startswith("_") and name not in META_FIELDS:
name = "_" + name
if params and kwargs:
raise ValueError("Meta configs cannot have both value and a dictionary.")
self._meta[name] = kwargs if params is None else params
return self
def to_dict(self) -> Any:
meta = self._meta
# hard coded serialization of analyzers in _all
if "_all" in meta:
meta = meta.copy()
_all = meta["_all"] = meta["_all"].copy()
for f in ("analyzer", "search_analyzer", "search_quote_analyzer"):
if hasattr(_all.get(f, None), "to_dict"):
_all[f] = _all[f].to_dict()
meta.update(self.properties.to_dict())
return meta