Class SimilaritiesDescriptor
Inheritance
SimilaritiesDescriptor
Assembly: OpenSearch.Client.dll
Syntax
public class SimilaritiesDescriptor : IsADictionaryDescriptorBase<SimilaritiesDescriptor, ISimilarities, string, ISimilarity>, IDescriptor, IPromise<ISimilarities>
Constructors
|
Edit this page
View Source
SimilaritiesDescriptor()
Declaration
public SimilaritiesDescriptor()
Methods
|
Edit this page
View Source
BM25(string, Func<BM25SimilarityDescriptor, IBM25Similarity>)
BM25 Similarity. Introduced in Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. Okapi at TREC-3. In Proceedings of the Third Text Retrieval Conference (TREC 1994). Gaithersburg,
USA, November 1994.
Declaration
public SimilaritiesDescriptor BM25(string name, Func<BM25SimilarityDescriptor, IBM25Similarity> selector)
Parameters
Returns
|
Edit this page
View Source
Custom(string, string, Func<CustomSimilarityDescriptor, IPromise<ICustomSimilarity>>)
Declaration
public SimilaritiesDescriptor Custom(string name, string type, Func<CustomSimilarityDescriptor, IPromise<ICustomSimilarity>> selector)
Parameters
Returns
|
Edit this page
View Source
DFI(string, Func<DFISimilarityDescriptor, IDFISimilarity>)
Similarity that implements the divergence from independence model
Declaration
public SimilaritiesDescriptor DFI(string name, Func<DFISimilarityDescriptor, IDFISimilarity> selector)
Parameters
Returns
|
Edit this page
View Source
DFR(string, Func<DFRSimilarityDescriptor, IDFRSimilarity>)
Implements the divergence from randomness (DFR) framework introduced in Gianni Amati and Cornelis Joost Van Rijsbergen.
2002.
Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst.
20, 4 (October
2002), 357-389.
The DFR scoring formula is composed of three separate components: the basic model, the aftereffect and an additional
normalization
component,
represented by the classes BasicModel, AfterEffect and Normalization, respectively.The names of these classes were
chosen to match the
names of their counterparts in the Terrier IR engine.
Declaration
public SimilaritiesDescriptor DFR(string name, Func<DFRSimilarityDescriptor, IDFRSimilarity> selector)
Parameters
Returns
|
Edit this page
View Source
IB(string, Func<IBSimilarityDescriptor, IIBSimilarity>)
Information based model similarity.
The algorithm is based on the concept that the information content in any symbolic distribution sequence
is primarily determined by the repetitive usage of its basic elements.
For written texts this challenge would correspond to comparing the writing styles of different authors.
Declaration
public SimilaritiesDescriptor IB(string name, Func<IBSimilarityDescriptor, IIBSimilarity> selector)
Parameters
Returns
|
Edit this page
View Source
LMDirichlet(string, Func<LMDirichletSimilarityDescriptor, ILMDirichletSimilarity>)
A similarity with Bayesian smoothing using Dirichlet priors.
Declaration
public SimilaritiesDescriptor LMDirichlet(string name, Func<LMDirichletSimilarityDescriptor, ILMDirichletSimilarity> selector)
Parameters
Returns
|
Edit this page
View Source
LMJelinek(string, Func<LMJelinekMercerSimilarityDescriptor, ILMJelinekMercerSimilarity>)
A similarity that attempts to capture important patterns in the text,
while leaving out noise.
Declaration
public SimilaritiesDescriptor LMJelinek(string name, Func<LMJelinekMercerSimilarityDescriptor, ILMJelinekMercerSimilarity> selector)
Parameters
Returns
|
Edit this page
View Source
Scripted(string, Func<ScriptedSimilarityDescriptor, IScriptedSimilarity>)
A similarity that allows a script to be used in order to specify how scores should be computed.
Declaration
public SimilaritiesDescriptor Scripted(string name, Func<ScriptedSimilarityDescriptor, IScriptedSimilarity> selector)
Parameters
Returns
Implements
Extension Methods