DataFrame.min
- DataFrame.min(numeric_only: bool | None = None) Series
Return the minimum value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Parameters
- numeric_only: {True, False, None} Default is None
Which datatype to be returned - True: Returns all values as float64, NaN/NaT values are removed - None: Returns all values as the same dtype where possible, NaN/NaT are removed - False: Returns all values as the same dtype where possible, NaN/NaT are preserved
Returns
- pandas.Series
min value for each numeric column
See Also
Examples
>>> from tests import OPENSEARCH_TEST_CLIENT
>>> df = oml.DataFrame(OPENSEARCH_TEST_CLIENT, 'flights', columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"]) >>> df.min() AvgTicketPrice 100.021 Cancelled False dayOfWeek 0 timestamp 2018-01-01 00:00:00 dtype: object
>>> df.min(numeric_only=True) AvgTicketPrice 100.020531 Cancelled 0.000000 dayOfWeek 0.000000 dtype: float64
>>> df.min(numeric_only=False) AvgTicketPrice 100.021 Cancelled False dayOfWeek 0 timestamp 2018-01-01 00:00:00 DestCountry NaN dtype: object