DataFrame.quantile
- DataFrame.quantile(q: int | float | List[int] | List[float] = 0.5, numeric_only: bool | None = True) DataFrame [source]
Used to calculate quantile for a given DataFrame.
Parameters
- q:
float or array like, default 0.5 Value between 0 <= q <= 1, the quantile(s) to compute.
- numeric_only: {True, False, None} Default is True
Which datatype to be returned - True: Returns all values as float64, NaN/NaT values are removed - None: Returns all values as the same dtype where possible, NaN/NaT are removed - False: Returns all values as the same dtype where possible, NaN/NaT are preserved
Returns
- pandas.DataFrame
quantile value for each column
See Also
Examples
>>> from tests import OPENSEARCH_TEST_CLIENT
>>> oml_df = oml.DataFrame(OPENSEARCH_TEST_CLIENT, 'flights') >>> oml_flights = oml_df.filter(["AvgTicketPrice", "FlightDelayMin", "dayOfWeek", "timestamp"]) >>> oml_flights.quantile() AvgTicketPrice 640.387285 FlightDelayMin 0.000000 dayOfWeek 3.000000 Name: 0.5, dtype: float64
>>> oml_flights.quantile([.2, .5, .75]) AvgTicketPrice FlightDelayMin dayOfWeek 0.20 361.040768 0.0 1.0 0.50 640.387285 0.0 3.0 0.75 842.213490 15.0 4.0
>>> oml_flights.quantile([.2, .5, .75], numeric_only=False) AvgTicketPrice FlightDelayMin dayOfWeek timestamp 0.20 361.040768 0.0 1.0 2018-01-09 04:43:55.296587520 0.50 640.387285 0.0 3.0 2018-01-21 23:51:57.637076736 0.75 842.213490 15.0 4.0 2018-02-01 04:46:16.658119680